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Abstract--In an airlift pumping process, air is injected into the pipe containing the fluid to be transferred. 
Small diameter airlift pumps are, in particular, used for corrosive or radioactive liquids. However, for 
certain combinations of the geometrical parameters and air flow rate, they may become unstable. In this 
case, the flow at the riser outlet pulsates strongly, which cannot be accepted for many applications. 

An airlift pump involves three different regions, e.g. a single phase liquid flow and a separate single 
phase gas flow upstream of the air injection device and a two-phase flow downstream. The instabilities 
are due to density wave oscillations in the two-phase flow. Depending on the liquid flow inertia, friction 
effects and gas flow compressibility, the density waves are sustained or not. 

The present study is based upon a detailed description of the steady state flow in a small diameter airlift 
pump. A linear stability analysis is performed and assessed against an extensive set of experimental data. 
Both the experimental and analytical results show that the influencing parameters have complex effects 
and strongly interact: the same variation of a parameter may have opposite effects, i.e. stabilizing or 
destabilizing, depending on the values of the other parameters. The effect of the compressibility of the 
gas flow between the regulating valve and the air-injection device is shown to be very important. 

The analysis presented leads to a numerical model that can be considered as a practical tool for airlift 
performance and stability analysis. © 1997 Elsevier Science Ltd 
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1. I N T R O D U C T I O N  

A deta i led  s tudy o f  stable ope ra t ion  o f  smal l -d iameter  airl if t  p u m p s  has been publ i shed  previous ly  
(de C a c h a r d  and  De lhaye  1996). This pape r  is the con t inua t ion  o f  this s tudy and deals  with the 
p red ic t ion  o f  instabil i t ies.  The reader  should  refer to the first paper  for  the descr ip t ion  o f  the airl if t  
p u m p s  invest igated (figure 1), the context ,  no ta t ion ,  and  s teady-s ta te  equat ions .  

Uns tab le  airl if t  ope ra t ion  involves low frequency (less than 1 Hz) osci l la t ions o f  the l iquid flow 
at the p u m p  outlet .  In  the wors t  cases, the flow takes the form of  violent,  per iodic  expuls ion o f  
l iquid jets.  

The  instabi l i t ies  result  f rom densi ty  wave osci l la t ions in the riser, coupled  with osci l la t ions o f  
the single phase  l iquid flow ups t r eam of  the air  injection.  Their  basic  mechan i sm has been expla ined 
by H j a l m a r s  (1973), who also p r o p o s e d  a s tabi l i ty  cr i ter ion based on the l inear  analysis  o f  the 
t rans ient  flow equat ions .  However ,  the two-phase  flow model  used, i.e. a homogeneous  mode l  
wi thou t  fr ict ion,  was very crude.  

A more  complex  version o f  H ja lmar s '  mode l  including gas - l iqu id  relat ive veloci ty has been 
p r o p o s e d  by Apaz id i s  (1985). In  this model  a bubble  flow with a un i fo rm and  imposed  in i t ia l  bubble  
d i ame te r  was assumed and  the wall  fr ict ion was still neglected.  Both assumpt ions  are unreal is t ic  
for  smal l -d iamete r  airl if t  pumps .  

Moreove r ,  H ja lmar s  and  Apaz id i s  assume that  the air  inject ion takes place near  the b o t t o m  of  
a riser which is immersed  in a large l iquid tank.  W h e n  the l iquid is suppl ied to the a i r - in ject ion 
zone th rough  a pipe,  the geometr ica l  parameters ,  e.g. length and  diameter ,  o f  this p ipe  s t rongly  
influence the l iquid flow iner t ia  and,  as a consequence,  the system stabil i ty.  

tPresent address: Thermal-Hydraulics Laboratory, Paul-Scherrer Institute, CH-5232 Villigen-PSI, Switzerland. 
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Figure 1. Typical airlift geometry. D, D~: internal diameters of the riser and of the liquid suction pipe, 
respectively; po, pd: upstream and downstream pressure; S: submergence, defined as H/L. 

Finally,  the influence of the gas supply pipe, between the regulating valve and  the air injection, 
was no t  accounted for. Gas  compressibil i ty effects, directly related to the volume of the gas supply 
pipe, have a very strong destabilizing influence. These effects canno t  be avoided in many  cases, e.g. 
when airlift pumps  are used for radioactive liquids, the regulating valves having to be kept outside 
the con tamina ted  area. 

Table 1. Test designation (bold) and parameters 

submergence (S) 

liquid length (m) diameter (mm) 0.3 0.5 0.7 
pipe 5.5 + 8S 19.4 151 152 

9.2 232 251 252 253 272 
11.7 + 8S 9.2 352 

29.6 6.9 29.6 54,6 29.6 
gas pipe length (m) 
(diameter: 10 ram) 
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Figure 2. Examples of  airlift stability curves: test 151 and 352 (data in table 1). The curves represent the 
results of  the linear stability analysis. The experimental results appear through the symbols used to 
represent the calculated values (see legend). Lines are used when stable operation could be obtained, 
whereas symbols are used when the system was always unstable. The gas velocity corresponds to 
MG/(ApGo), MG being the injected gas mass flow rate, A the riser cross-sectional area, and pGd the gas 

density at the riser outlet. 

A linear stability analysis is proposed hereafter, based on our steady-state model (de Cachard 
and Delhaye 1996) which includes a detailed description of the two-phase flow in the riser. The 
strong influences of the liquid and gas supply pipes are accounted for. The theoretical results are 
assessed against experimental results obtained for a large range of the influence parameters, i.e. 
the airlift submergence, gas flow rate, and liquid and gas pipe geometries. 

The procedure used for the linear analysis is classical, and consists in: 

---deriving the transient flow equations; 
--splitting each variable X into 

S =  2 + ~ [1] 

where .g is the solution of the steady-state equations and )? the time-dependent perturbation; 
--linearizing the flow equations in the case of small perturbations; 
--analyzing the rate of growth for the perturbations. 

The input parameters are defined in section 2.1 of the steady-state analysis, i.e. the air mass flow 
rate Me, the geometrical parameters (H, L, L~, D, Dr), the pressure conditions (pv,pd), the fluid 
physical properties, and also the gas pipe volume v: located between the air flow regulating valve 
and the injection tee. 
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2. ANALYSIS 

2.1. Transient f low equations 

2.1.1. Single phase liquid f low. The friction pressure losses are expressed using the steady-state 
relationships. The expression of the pressure just downstream from the tee (pT), [9] in the 
steady-state model, must be complemented with the liquid inertia term 

d 
--pLL~ dtt JL, [2] 

where L~ is the length of the liquid suction pipe and JL, the velocity in this pipe, given by 

A 
JL, = JLr At [3] 

where JET is the liquid superficial velocity just downstream of the tee, A and AL being the riser and 
liquid suction pipe cross-sectional areas, respectively. 

Hence 

with 

pr = pu + pLgH -- ,9J -- ~ [4] 

A d [5] ~ g pL ~ ,  ~ JLT 
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Figure 3(a). 
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Figure 3. Unstable operating point at low gas velocity. Liquid velocity time trace and relative spectral 
density for test 151 with JG = 0.15 m/s. Comparison with frequencies and amplification coefficients 
corresponding to successive roots of [63]. The liquid velocity corresponds to the liquid flow rate in the 

suction pipe divided by the riser cross-sectional area. 

0.3 

,LI + + 1 CT)2 ] [6] 

where 2t and ~ denote the friction factor and the sum of the singular pressure drop coefficients 
in the suction pipe, respectively, ~ the singular pressure drop coefficient corresponding to the liquid 
flow contraction in the air-injection zone, and er the void fraction just downstream of the tee (the 
symbol ~ is used for 'is defined as'). 

2.1.2. Single phase gas flow. The following assumptions are made: 

--ideal gas; 
--adiabatic flow; 
--homogeneous pressure and temperature in the gas pipe: pT(t) and OT(t). 

Neglecting the kinetic and potential energy terms, the total energy balance between the flow 
regulating valve and the tee reads 

d 
d-t U~ = - A(MchG) [7] 

where U~ is the (total) gas internal energy given by 

UG -~" CvGpGTU20T [8] 
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Cv~ being the gas specific heat at constant volume, p(;v the gas density, v2 the volume of the gas 
pipe, h(3 the gas specific enthalpy and MG the gas mass flow rate. 

The conditions at the flow regulating valve are 

M(; = Me; (choked flow) [9] 

h(; = c.{~0,, [10] 

where cpo denotes the gas specific heat at constant pressure and 0v the gas temperature at the valve. 
At the air-injection tee, the conditions are 

M{; = pGTJc, TA [1 1] 

h~ = Cp(;OT [12] 

where J{;v denotes the gas superficial velocity in the riser just downstream from the tee and A the 
riser cross-sectional area. 

Hence 

The ideal gas law reads 

d 
l,:c,,(~ dt (p(~r0T) = lfl(;cpGOv- p(;TJc;vAcpGOv. 

p('~TO: = pv/r{; 

where rG denotes the gas specific constant. 

[13] 
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Figure 4. Slightly unstable operating point at low gas velocity. Test 151; Jo = 0.46 m/s. 

0.4 

Combining the two previous equations leads to the following relation which describes the gas 
flow: 

with 

d 
v2 ~PT  + A~J~TpT -- ~o~'roOv = 0 [15] 

~- c~o/cvo. [l 6] 

2.1.3. Two phase flow. The following assumptions and approximations are made. 
- - G a s  density changes in the riser are accounted for in the steady-state reference solution (de 

Cachard and Delhaye 1996). However, in the time-dependent perturbation analysis, gas density 
is taken at the average pressure 

/~m - -  p T  "[- p d  [! 7] 
2 

This first-order approximation is required to obtain a simple analytical solution for the void 
fraction ([35] below). It may be questionable for very tall airlift pumps (several tenths of metres). 

- - T h e  rapid fluctuations of slug flow are not accounted for in the transient flow equations, which 
are written in terms of the averaged (over a short time) phase velocities and void fraction 
(Vo, VL, Q. Indeed, the frequency ranges of the airlift instabilities and of the slug flow fluctuations 
are distinct (typically, 0.01 to 1 Hz in the first case, 1 to 20 Hz in the second one). 

- - T h e  gas slip velocity and the wall friction term are expressed using the steady-state 
relationshios. 
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The gas mass balance needs 

?, 
0-7 (pGE) = (pGJG) 

where E(z, t) is the void fraction and JG(z, t) the gas superficial velocity, with 

Jo = eVo 

VG being the gas velocity. 
The approximation PG = fig = constant yields 

O-rE+ (EVo)=O. 

The mixture continuity equation reads 

0 
~-TJ= 0 

where J(t) denotes the mixture superficial velocity given by 

JgJG + Jk. 

The gas velocity is expressed, as in the steady-state, by 

VG= CoJ + Vo 

where the constants Co and V0 are given by [25] and [28] to [32] of the steady-state model. 
Since J is independent of z 

& v o = 0  
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Figure 5. (Conditionally) stable operating point. Test 151; JG = 1.52 m/s; gas valve smoothly opened. 

1.0 

25 

and the gas continuity equation [20] becomes 

E+vo( t )  E = o  [251 

which corresponds to void fraction propagation at velocity Vc(t). 
Neglecting as in steady-state, the gas inertia and gravity terms, the mixture momentum balance 

reads 

pL~ZZ L+pL  J g + ~ z z p - - o ~ + p L ( 1 - - Q g = 0  [26] 

where p(z, t) is the pressure and J /  the convection term, given by 

J l ~  ~ [27] 
1 - E  

is the friction pressure gradient, given by the steady-state equations 

~- = (1 -- Cch.rn)dp/dz)f.,..g + Cch.m(dp/dz)r.¢h.m [281 

where (dp/dz)f.s~.~ and (dp/dz)f.~h.r. are the values predicted by the slug and churn flow models of 
the steady-state analysis (sections 3.2 and 3.3), and Cch.r. is an empirical interpolation coefficient 
(section 3.5). 
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2.1.4. Summary.The airlift transient behaviour is then described by [4], [15] (single-phase liquid 
and gas flow up to the mixing zone), [25], and [26] (two-phase flow: void propagation and 
momentum balance). 

2.2. Perturbations of the steady state 

The above equations are then linearized under the small perturbation approximation. The simple 
expression obtained for the void propagation equation enables the momentum balance to be 
integrated along the riser height by means of the method introduced by Hjalmars (1973). 
Eliminating fit (pressure at the tee) leads to two ordinary differential equations involving time-lag 
terms. 

2.2.1. Linearization of transient flow equations. If Blasius' formula, given by [11] in the 
steady-state model, is used for )~t, the linearized form of the liquid flow equation [4] reads 

A J~T(t) -- K, JLT(t) -- K2~T(t) [291 fiT(t) = --pLLl 

(J' denotes the derivative of J) with 

K,~pL JL ¢, +(1 +0"2765~'75D ~25v°'25Lt\~// J [301 

l+~c  

The gas equation [15] becomes 

v2fi~(t) + ~'[PTYoT(t) + YoTfiT(t)] = O. 

[31] 

[32] 
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~ 4  

0 10 

Instantaneous 

20 30 40 

£v aLe . . . . . . . .  

5O 
Time (s) 

60 

Figure 6(a). 
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Figure 6. Unstable operating point at high gas velocity. Test 151; JG = 1.52 m/s reached from a higher 
value. 

1.o 

The void propagation equation [25] becomes 

~ E  + VG~Z(= 0 [331 

and the mixture momentum balance [26] 

pL -~ JL + pL ~z ~[  + ~z p -- ~ + pLg(1 -- e) = 0. [34] 

2.2.2. Integration o f  momentum balance. [33] corresponds to a propagation of the void 
perturbation ( at constant velocity I2o. ( may thus be considered as a function of the variable 
( t -  z/~'~) only. The following notation is used: 

( = f ' ( t  - z/VG) [35] 

where f '  denotes the derivative o f f .  
f '  is integrated between the air-injection tee (z = 0) and the riser top (z = L): 

fo Lf ' ( t  - z/Y'~) dz = l?G[f(t) - f ( t  - T)] [36] 

where T is the gas transit time in the riser, given by 

T = L/V'G. [37] 
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The perturbations of the two-phase flow variables are expressed as functions of C, ] ,  and p, using 
the drift-flux relationships [19] and [23]. The following notation is used: 

J(t) ~ g'(t). 

The expressions obtained for the superficial velocities are 

JG = Pof '(z ,  t) + CoCg'(t) 

Je = - ~'of'(z, t) + (1 - Co()g'(t) 

and, for the convection and friction terms of the momentum balance 

~,~= M f ' ( z ,  t) + M2g'(t) 

~" = FLf'(z, t) + F2g'(t) 

[381 
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Figure  7. Effect of  inert ia  and  fr ict ion in the l iquid  suct ion pipe on airlift  s tabil i ty.  
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Ft and F2 are obtained by numerical derivation, J~ being computed using the steady-state model 
[28]. This model is based on the Jo and JL variables, whereas e and J are used here. The variable 
change is performed using the drift-flux equations [19] and [23]. 

The above expressions are substituted in the momentum balance [34], which is then integrated 
over the riser height using [36], giving 

pLL(I -- C o O g " ( t )  - -  pL(/TG -- lT"L)2[f'(t) - - f ' ( t  - -  T)] 

- F 2 L g ' ( t )  - (F~ + p L g ) ~ ' G [ f ( t )  - - f ( t  - -  T)] --~,(t) = 0. [47] 

2.2.3. C o u p l i n g  a t  the  a i r - i n j e c t i o n  tee .  For integration along the riser, the gas density is taken 
at the constant pressure/~m [17]. For the coupling terms at the tee, the density is taken at the 
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constant pressure/~. Thus, the superficial velocities at the tee and in the riser are related by the 
following relationships: 

/~m 
JOT = v-- Y ~ ( z  = O, t)  [48] 

Pv 

J ~  = J~(z = O, t). [49] 

From [39] and [40] 

and from [19] and [23] 

with 

L T  - -  /~m _ ~ [~7of'(t) + Co~g'(t)] 

~ = - f ' o f ' ( t )  + (1 - CoQg'( t )  

[50] 

[~l] 

~o~ = K~f'(O + Kag'(t) [52] 

/<3 ~-~°vo~ L~ [& (~ - CoC~) + co~ 1 Is3] 

/ ( ~  Co ~fi~m (1 -- C o ( v ) ( -  (T(1 -- CoC)] = ~  
LP~ 

[54] 
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Figure 9. Effect of gas pipe volume on airlift stability. 



STABILITY OF SMALL DIAMETER AIRLIFT PUMPS 31 

2.2.4. The f i n a l  se t  o f  equat ions .  The expressions for JcT, JLr, and gT are substituted into the 
single-phase liquid and gas flow equations [29] and [32]. /~T (pressure perturbation at the 
air-injection tee) is eliminated between the single-phase liquid flow equation [29] and the two-phase 
flow equation [47], and between the single-phase liquid and gas flow equations [29] and [32]. 

The following notations are introduced: 

A 
IL __A. pL L, ~ [55] 

ILo ~ pL L [56] 

I ~ I L  -'1- /L°  [57] 

G ~ pLg [58] 

O_Gr ~= AYor [59] 

/£5 -~ 1 - Cog. [60] 

The resulting system of equations describing the evolution of the perturbationsff (void fraction) 
and g' (mixture superficial velocity) is 

with 

C f ' ( t )  - C2g"(t)  + C3[ f ' ( t )  - f ' ( t  - T)] + C~f ' ( t )  - Csg ' ( t )  + C6[(f(t) - f ( t  - T)] = 0 [611 

CTf"( t )  - C s g ' ( t )  + Cgf"( t )  - C,og"(t) + C, vC'(t) + C12g'(t) = 0 [62] 

C,-~ Voh 

C~ a= KsI 

C3~--pL(¢O- eL)' 

C4 ~= ( 'cKI - KzK3 

C5 ~= KsK, + K2K4 - F2L 

c6~ Po(F, + G) 

C7 ~= ~'ov21L 

G ~= Ksv:IL 

Cg~v2(~"oKI -- K2K3) + 7/7"GOGT/L 

C~o~-K~(v2Kl + ~'Q~TA) + v2K2K4 

C,, g~,[0o~(g, rTo - g~g~) + f'OA:m] 

C,~g~[(1 -- g~)A:m -- (K~K, + K~KOOod. 

2.3. Stab i l i t y  cri terion 

The characteristic equation of the system [61], [62] is 

P3(2)P4(2) - Ps(2)[P,(2) -- P2(2)e -jr] = 0 [631 
IJMF 24/I B 
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with 

P,(2)~C,22 + (C3 + C4)2 + C6 

P3).) & C3,~ d- C6 

P3(),) & C222 + C59. 

P4(),)&C722 + C92 + Cll 

Ps(2)~ C822+ Ct02 - CL2. 

Let the roots of [63] be denoted by 

),, = ~; + j~o;. [64] 

If any of these roots has a positive real part, the corresponding small perturbation, whose frequency 
is o~;/(2n), is amplified, and the system is unstable. If not, the system may also be unstable due 
to the possible existence of subcritical bifurcations. The occurrence of such instabilities which are 
not predicted by the linear analysis has been investigated on an experimental basis and will be 
discussed in the next section. 

The algorithm used for the numerical determination of  the successive roots of [63] is described 
in de Cachard (1989). 

3. EXPERIMENTS 

The experimental set-up was described in our first article (de Cachard and Delhaye 1996, section 
2.3, figure 1), It was designed to investigate systematically the infuence of  the relevant geometrical 
parameters on the airlift stability. 

The inertia term in the liquid suction pipe Ik, defined by [55], can be modified by changing the 
diameter and/or adding extra sections (the friction term is also affected). The airlift submergence 
can be changed by moving up or down the upstream tank (which also affects the length of the liquid 
pipe). The gas compressibility effect can be varied by adding extra pipe lengths between the injection 
tee and the regulating valve, where the flow is choked. 

The values of the geometrical parameters for the tests presented here are listed in table 1. 
The experimental investigation of the airlift stability has been based on instantaneous liquid flow 

rate measurements in the liquid suction pipe. A bidirectional electromagnetic flowmeter with a 
passband of 0-100 Hz was used. The acquisition frequency was 20 Hz. The frequency spectrum 
was obtained by Fourier transform. The result is divided by the steady (0 Hz) component, to allow 
a comparison between different tests. The final result is referred to hereafter as the relative spectral 
density. 

4. MODEL ASSESSMENT 

The model assessment is based on the amplification coefficient c defined by 

c & exp(2~Z~Om"x~ [65] 
\ t o  .... / 

where ~9m,x denotes the maximum of the real parts of the roots of the characteristic equation [63], 
and mm~x the corresponding imaginary part. c is the amplification factor, over one period, of the 
most destabilizing perturbation. The marginal linear stability corresponds to c = 1. 

Figure 2 presents the theoretical stability curves, i.e. the amplification coefficient vs the imposed 
gas flow rate obtained for two different airlift geometries. The experimental results, i.e. stable or 
unstable operation for given values of the air flow rate, are also indicated. For these results, an 
experimental stability criterion has been chosen arbitrarily, in terms of relative spectral density. The 
system is considered as unstable if the relative spectral density of  one oscillatory mode or more 
is greater than 0.1. This criterion correlates well with our visual observations. It corresponds to 
the point when the flow oscillations become apparent. 
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More detailed experimental information about the various types of operating points represented 
in figure 2 is displayed in figures 3 to 6. The time traces of the liquid flow rate show the rapid 
fluctuations of slug flow. The airlift instabilities induce some low frequency modulations. In the 
frequency graphs, the predicted amplification coefficients are superimposed on the relative spectral 
density of the experimental signal. It should be pointed out that the linear analysis performed does 
not attempt to predict quantitatively the peaks in the experimental spectral density. 

Figures 3 to 6 correspond to the various stability behaviours observe in test 151 (see table 1 for 
geometrical data) for increasing values of the injected gas flow rate. 

At low gas flow rate (figure 3), the flow is unstable. Visual observation reveals regular 
oscillations, with the gas entering periodically the liquid pipe (flow reversal). The flow at the riser 
outlet is strongly pulsating. When the gas flow rate is increased, the strength of the oscillations 
decreases. For the operating point presented in figure 4, the flow oscillations are still apparent, but 
there is no more reverse flow. However, the gas-liquid interface, downstream of the injection tee, 
fluctuates regularly. Further increasing the gas flow rate first stabilizes the flow (figure 5), and then, 
suddenly, induces very strong oscillations (e.g. figure 6). In this case, the liquid enters periodically 
the gas pipe (and vice versa). 

In fact, figures 5 and 6 correspond to the same value of the injected gas flow rate. The stable 
flow regime of figure 5 can be destabilized, for example, by suddenly closing and opening again 
a valve. The oscillatory regime obtained does not depend on the initial conditions. Such operating 
points are designated 'conditionally stable' in the stability curves presented. The operating points 
which are designated 'stable' could not be destabilized. 

The frequencies of the system oscillatory modes are well predicted by the linear analysis, provided 
the oscillations are not too strong (figures 3 to 5). For very strong oscillations, the frequencies are 
shifted (figure 6). 

The linear stability boundaries predicted for test 151 are also quite realistic, as may be seen in 
figure 2. This is also true for test 352 (same figure), which shows quite a different stability behaviour 
in the flow rate range investigated. Indeed, for test 352, increasing the injected gas flow rate always 
tends to stabilize the flow, whereas for test 151 it may also have the opposite effect. These 
differences in behaviour are well described by the analysis. The effects of the governing parameters 
are analysed in a more systematic way in figures 7 to 9. 

Figure 7 presents the influence of the liquid suction pipe geometry. As indicated in table 1, the 
experiments presented (tests 152, 252, 352) correspond to increasing inertia (and friction) terms. 
This stabilizes the flow, as it appears in the experimental results as well as in the analysis. Physically, 
increasing the inertia tends to lower the resonance frequency in the liquid suction pipe (U tube). 
As a consequence, the high frequency range (corresponding to high gas velocity, i.e. low transit 
time in the riser) is stabilized. 

Figures 8 and 9 show a stabilizing influence of increasing submergence, and a strong destabilizing 
influence of increasing gas pipe volume. Again, theoretical and experimental trends are in complete 
agreement. However, the quantitative prediction of the stability thresholds shows a systematic 
error, in the nonconservative direction. 

5. CONCLUSION 

Airlift instabilities are due to density waves oscillations in the two-phase flow section. Depending 
on the liquid flow inertia, friction terms and on the gas flow compressibility term, the density waves 
are sustained or not. The effect of the gas compressibility term is preponderant. 

The objectives of the linear stability analysis are considered as achieved. Actually, the unstable 
behaviours observed within the linear stability domain are attributed to some nonlinear effects. This 
is certainly right when both stable and unstable regimes are observed. It should also be right for 
the always unstable points observed near the marginal linear stability. In this case, the finite 
perturbations inherent to the system are sufficient to bring it into a neighbouring, unstable state, 
and the flow cannot be stabilized. 

The linear analysis performed predicts the complex and interacting effects of the geometrical 
parameters and the gas flow rate well. Subcritical instability has only been observed in regions 
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adjacent to the linear stability boundary. Thus, it is possible, using empirically defined safety 
margins, to predict airlift stability in a conservative manner. Such an empirical criterion has been 
derived for engineering purposes. The stability prediction, for a given airlift operating point within 
the linear stability domain, is based on the first (lowest) oscillatory frequency predicted by the linear 
analysis for this point. If this frequency is far enough from the equivalent frequency (first oscillatory 
mode) at the linear stability boundary, the point is predicted as stable. 

The following empirical stability criterion (de Cachard 1989) is proposed for practical 
applications: 

Ilog(f/J'~,rOI > log[1 + Ke(fm~rg/Jmax)] [66] 

where f is the first oscillatory frequency predicted by the linear analysis for the operating point 
considered, fm~rg corresponds to the marginal stability, and fnl,~ corresponds to the operating point 
giving the maximum liquid flow rate; Ko is an empirical factor. Our experimental results correlate 
very well with Ke = 0.47, but the applicability of this purely empirical value to very different 
operating conditions is questionable. 

For practical applications, the use of such empirical criteria will be required until a full transient 
analysis is performed. The problem is particularly challenging due to the moving boundaries 
between the single-phase and two-phase flow sections during the oscillations, e.g. when a reverse 
gas flow takes place in the liquid suction pipe, or when the liquid flow is split between the riser 
and the gas pipe. 
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